
The Diamond Problem Solved!
A new design pattern DDIFI (Decoupling Data Interface From data Implementation)
as a clean and general solution to multiple inheritance: by using virtual properties

● Clean: solve the diamond (name clashing) problem very cleanly
● General: works in C++ / Python / Java / C# / Ocaml / Lisp / Scala / Eiffel / D, etc. …

○ YES: with DDIFI, we can achieve clean multiple inheritance in Java! — the so-called single inheritance language!

NOTE the key point: it’s DATA interface, not (just) method interface.

YuQian Zhou (zhou@joort.com), June 24, 2023

Disclosure: This work is patent pending.



Talk outline

● Intro: about me

● Review how plain multiple inheritance currently work in C++
○ The diamond problem, why it is hard:

i. C++ memory model is messy (a very brief discussion)

ii. Semantic branching

○ Current less-ideal solution: by composition

● My design pattern DDIFI, which solved the diamond problem cleanly

○ Stop inheriting data fields; instead, use virtual property to define regular methods

○ A new concept: semantic branching site

● Walk-thru DDIFI in C++

● General programming rules / guidelines of DDIFI

● Quick walk-thru DDIFI in Java!

● Q & A

Disclosure: This work is patent pending.



About me, my experience with languages

● Startup founder

○ Always looking for better developing tools, 

○ including better programming languages

○ C++, D, Rust, Dart, Python, Java, Lisp, Go

● Google engineering

○ 3 main lang: C++, Java & Python

○ Invited Walter Bright to Google HQ in 2005 to give a talk about D pre-v1.0

■ EVP then Alan said the new language need to be mature & stable

■ … Google later developed Go (2009) … by Robert Griesemer, Rob Pike, Ken Thompson

● D.Phil, Oxford Univ., thesis advisor: Prof. Tony Hoare

○ Process algebra, CSP (later Go is based on)/ OOP (Eiffel)

Disclosure: This work is patent pending.

https://www.google.com/search?sxsrf=APwXEdf-cFM7ZShP_hhS3sje09gfEy2ebw:1687457319805&q=Robert+Griesemer&si=AMnBZoEZ8aFftZu792frFYrnK9KQYGXRL3UTeDeHB9-uc0sfFWVU9YTgH-ZEf9WEbKwHUGuD8AgEW8jL8zFaxPUY_jJF3YcNua-4uSIgRwG7X834vlUyZgZhRwTGriFQsIHiMxA5vwrbaMj7VtyOOFu8ijGe77hkedchyBbUDSTtMXgiYDa8HtvIR-8ljPOrjI0wid21rJ_YS3GfG0onMK_THGRUqEu6ykBOUZz6qZMzttwFp6QVlQxtiMtsolnuEwxwKhT_Be71f4Pnqy4Jh7-ceh6PtZ2L0Q%3D%3D&sa=X&ved=2ahUKEwj_ifuwvNf_AhVgMTQIHfF4DKoQmxMoAHoECFIQAg
https://www.google.com/search?sxsrf=APwXEdf-cFM7ZShP_hhS3sje09gfEy2ebw:1687457319805&q=Rob+Pike&si=AMnBZoFk_ppfOKgdccwTD_PVhdkg37dbl-p8zEtOPijkCaIHMm5fDBq_7VIiRcn3Ewgaj7foRrvTOcN8OoHz3C5TMGphJ53ETX3JXKvuAe2Sh5H5Bj0HkDXZnA-0KfMdRaj-QAP_SoMnXIC4ktVv8xwJ4Ajv_qfkU4MZ_qVPD3UJw2rPm8MOFz2s9Un3StyYnUMtOi8hZCoflidcK_Xxg64d_mDu5ZRVOdMuqIrVMco8ggvTnEKBlu9kLp_Aue7NsMeSVIfE5m3U&sa=X&ved=2ahUKEwj_ifuwvNf_AhVgMTQIHfF4DKoQmxMoAXoECFIQAw
https://www.google.com/search?sxsrf=APwXEdf-cFM7ZShP_hhS3sje09gfEy2ebw:1687457319805&q=Ken+Thompson&si=AMnBZoFk_ppfOKgdccwTD_PVhdkg37dbl-p8zEtOPijkCaIHMpn849LDvNc-oacSnm4bOgEhqLMeAWFGfCH9yNRBMN-nojHnahVw_Ag7w1CI40ZEKuvbqSUjp2w0RThwUPjinvmDuH_06Uh0upCS_7KDE2rZ-yJ3lZ2E_GIzHPN4Hz4NGYpinbeceHr7MVE_bkxzcUeoQssOtf22WKQVnoRm-5EOjAQWKXgoCofGSqmnt0PMeBLwPyx8zqlBjJtXOFD-hcdDio5b&sa=X&ved=2ahUKEwj_ifuwvNf_AhVgMTQIHfF4DKoQmxMoAnoECFIQBA


Overview: Multiple Inheritance (MI)

Historically:
● MI is considered complex (e.g. since C++, v2.0 1989), caused lots of headache

○ E.g. Google C++ coding style strongly advised against it.
● Most notably: the diamond problem
● Such that, later languages Java(1995)/C#(2000)/D(2001)/…: only allow single inheritance + multiple 

interfaces (i.e. only method prototype declaration without implementation code).

BUT MI is still very useful for code reuse: programmers do want to reuse the implementation code (not just 
the method interface), so people invented other mechanisms to make remedy, e.g: 

● Trait: Scala, PHP, etc.
● Mixin: Ruby, Dart, D (multiple <interface + `alias this` + mixin template>, MI creeps in already)
● However, there is no clean solution for the name-clashes, esp for data fields.

Not anymore: with DDIFI
● Clean: solve the diamond (name clashing) problem very cleanly
● General: works in C++ / Python / Java / C# / Ocaml / Lisp / Scala / Eiffel / D, etc. …

Disclosure: This work is patent pending.



Motivation: the diamond problem

The "diamond problem" is an ambiguity that arises when two classes B and C 
inherit from A, and class D inherits from both B and C. If there is a method in A 
that B and C have overridden, and D does not override it, then which version 
of the method does D inherit: that of B, or that of C? 

From: https://en.wikipedia.org/wiki/Multiple_inheritance

Actually, this is application semantics, no compiler rule can help the 
programmers to choose auto-magically.

For the programmers, the answer is right in the problem description:
● Just override it!, or
● Use fully quantified method names, e.g. A.foo(), B.foo(), or C.foo().

Conclusion: for method name clash resolution, it’s very easy.

The more difficult problem is: fields resolution. Let’s see a concrete example:

Disclosure: This work is patent pending.

https://en.wikipedia.org/wiki/Multiple_inheritance


The more difficult problem: fields resolution

Disclosure: This work is patent pending.



The more difficult problem: fields resolution

For fields in A, that are inherited by B and C, and then in D. If the application 
semantics requires:

● Some of the fields (name) be joined, while
● Other fields (addr) be separated, how to achieve this?

How to handle both scenarios?
○ Separation is relatively easy, e.g. use fully quantified names
○ but how to join fields, e.g. Student.name & Faculty.name into 

ResearchAssistant.name?

In the remaining of the talk, we will only discuss fields.

Let’s work on this example application problem in C++, test-drive the 
`virtual` inheritance keyword.

Disclosure: This work is patent pending.



C++ plain MI: to virtual or not to virtual?
#define VIRTUAL  // virtual

class Person {

  String _name;

  String _addr;

};

class Student : public VIRTUAL Person {};

class Faculty : public VIRTUAL Person {};

class ResearchAssistant :

  public VIRTUAL Student , public VIRTUAL Faculty {};

Disclosure: This work is patent pending.



C++ plain MI: to virtual or not to virtual?
#define VIRTUAL virtual

(A) virtual inheritance: ResearchAssistant will have:

● 1 name
● 1 addr
● in total 2 fields

#define VIRTUAL  // empty

(B) default inheritance: ResearchAssistant will have:

● 2 names, 
● 2 addrs
● in total 4 fields

None of them achieved the application semantics!

● The super-class’ fields are shared / separated as a whole
● Cannot treat each field individually: i.e `name` shared, but `addr` separated

Let’s check C++ MI memory layout.

Disclosure: This work is patent pending.



C++ MI memory layout … as clear as mud!

From a patent by
Microsoft about MI:
(US5754862A)

Disclosure: This work is patent pending.



Problem 1: C++ MI memory layout … it’s messy!

Traditionally, all the fields from the all base classes are inherited.
BUT in the derived class:

● Should the memory layouts of all the different base classes’ fields be 
kept intact in the derived class? and in which (linear memory) order?

● How to handle: if the programmers want some of the inherited fields 
from different base classes to be merged into one field (e.g. name in the 
above example), and others separated (e.g. addr in the above 
example) according to the application semantics?

● What are the proper rules to handle all the combinations of these 
scenarios?

Disclosure: This work is patent pending.



The idea: stop inheriting data fields

Compare SI vs MI: for fields memory layout of any given class:
● In single inheritance, the path to root is linear, just tile them

○ E.g. for class G: [class A, class B, class G]
● In multiple inheritance, the path to root(s) is a lattice

○ However, the memory space is linear!
○ How to properly layout a lattice, with:

■ some joined (e.g. `name`)
■ others separated? (e.g. `addr`)

Inherited fields are too messy! … for both the
1. Compiler writers to get them right,

a. … and to handle all kinds of application semantics
2. Developers to even understand

So let’s just get rid of them!

He who fights with monsters might take care lest he thereby become a monster.
― Friedrich Nietzsche, Beyond Good and Evil

Disclosure: This work is patent pending.



Problem 2: semantic branching

Disclosure: This work is patent pending.



Current (less-ideal) engineering practice: use composition instead of MI

class ResearchAssistant : public StudentI, public FacultyI {
  Student _theStudentSubObject;  // composition
  Faculty _theFacultySubObject;  // composition

  // Problem 1: manual forwarding for *every* methods, i.e. code duplication
  void doBenchWork()  { _theFacultySubObject.doBenchWork(); }
  void takeRest()     { _theStudentSubObject.takeRest();    }

  String lab()  { return _theFacultySubObject._addr; }
  String dorm() { return _theStudentSubObject._addr; }

  // Problem 2: need mutex, and keep *multiple duplicate* fields in sync, i.e. data duplication
  std::mutex set_name_mtx;  // need extra mutex var

  String name() {
    set_name_mtx.lock();
    String r = _theStudentSubObject._name;
    set_name_mtx.unlock();
    return r;
  }
  String name(String name) {
    set_name_mtx.lock();
    _theStudentSubObject._name = name;  // dup fields
    _theFacultySubObject._name = name;
    set_name_mtx.unlock();
  }
};



DDIFI: the inherited fields are causing so much 
trouble, let’s just get rid of them!

Then how do we write regular methods?

● Well, just use: abstract property method 
(accessor) methods, i.e without actual field 
definition.

● Decouple data-interface (class Person with 
abstract property methods) from 
data-implementation (class PersonImpl where the 
fields and property methods are actually defined)

○ Note: the data-interface class contains the 
regular methods implementation, which are 
meant to be inherited (code reused)!

● Delay the data (field) definition only in the 
implementation class.

Disclosure: This work is patent pending.



Compare programming paradigms: procedural, OOP, DDIFI

Disclosure: This work is patent pending.



名不正，则言不顺；言不顺，则事不成。
(You must first name it properly, in order to talk about it intelligently.)

– Confucius

Define a new concept: semantic branching site
The two sub-class Faculty and Student actually has assigned two different semantics to their 
inherited Person.addr:

● Faculty use addr with “lab” semantics
● Student use addr with “dorm” semantics

We call `Person` is the semantic branching site of `addr`.

Then
● Field join: will be achieved by overriding virtual function of the same name
● Field separation: will be achieved by defining and overriding new semantic assigning 

property.

“Talk is cheap, show me the code.”
– Linus Torvalds

Now, let’s walk thru the code: https://github.com/joortcom/DDIFI

Disclosure: This work is patent pending.

https://github.com/joortcom/DDIFI


// define abstract virtual property, in Person's data-interface
class Person {
 public:
  virtual String name() = 0;  // C++ abstract virtual method
  virtual String addr() = 0;  // C++ abstract virtual method

  // all_public_or_protected_regular_methods() are defined in the data-interface
  // to be inherited and code-reused
};

// define fields and property method, in Person's data-implementation
class PersonImpl : Person {
 protected:
  String _name;
  String _addr;
 public:
  virtual String addr() override { return _addr; }
  virtual String name() override { return _name; }
};

Disclosure: This work is patent pending.



Immediately below the semantic branching site: Introduce new semantic assigning property:

class Faculty : public Person {
 public:
  // add new semantic assigning virtual property
  virtual String lab() {  // give it a new exact name matching its new semantics
    return addr();        // but the implementation here can be just super's addr()
  }

  // regular methods' implementation
  void doBenchwork() {
    cout << name() << " doBenchwork in the "
         << lab()  // MUST use the new property, not the inherited addr() whose semantics has branched!
         << endl;
  }
};

class FacultyImpl : public Faculty, PersonImpl {
  // no new field: be memory-wise efficient, while function-wise flexible
};

Disclosure: This work is patent pending.



Immediately below the semantic branching site, Introduce new semantic assigning property:

class Student : public Person {
 public:
  // add new semantic assigning virtual property
  virtual String dorm() {  // give it a new exact name matching its new semantics
    return addr();         // but the implementation here can be just super's addr()
  }

  // regular methods' implementation
  void takeRest() {
    cout << name() << " takeRest in the "
         << dorm()  // MUST use the new property, not the inherited addr() whose semantics has branched!
         << endl;
  }
};

class StudentImpl : public Student, PersonImpl {
  // no new field: be memory-wise efficient, while function-wise flexible
};

Disclosure: This work is patent pending.



class ResearchAssistant : public Student, public Faculty {  // MI with regular-methods code reuse!
};

class ResearchAssistantImpl : public ResearchAssistant {  // only inherit from ResearchAssistant
 protected:
  // define three fields, NOTE: totally independent to those fields
  // in PersonImpl, StudentImpl, and FacultyImpl
  String _name;
  String _faculty_addr;
  String _student_addr;
 public:
  ResearchAssistantImpl() {  // the constructor
    _name = “ResAssis”;
    _faculty_addr = “lab”;
    _student_addr = “dorm”;
  }

  // override the property methods
  virtual String name() override { return _name; }
  virtual String addr() override { return dorm(); }  // use dorm as ResearchAssistant's main addr
  virtual String dorm() override { return _student_addr; }
  virtual String  lab() override { return _faculty_addr; }
};

Disclosure: This work is patent pending.



ResearchAssistant* makeResearchAssistant() {  // the factory method
  ResearchAssistant* ra = new ResearchAssistantImpl();
  return ra;
}

int main() {
  ResearchAssistant* ra = makeResearchAssistant();
  Faculty* f = ra;
  Student* s = ra;

  ra->doBenchwork();  // ResAssis doBenchwork in the lab
  ra->takeRest();     // ResAssis takeRest in the dorm

  f->doBenchwork();   // ResAssis doBenchwork in the lab
  s->takeRest();      // ResAssis takeRest in the dorm

  return 0;
}

$ ./ddifi
ResAssis doBenchwork in the lab  # only one name: joined
ResAssis takeRest in the dorm    # but  two addr: separated
ResAssis doBenchwork in the lab  # total: 3 fields!
ResAssis takeRest in the dorm

Disclosure: This work is patent pending.



Alternative implementation of ResearchAssistant, use computation instead of raw field

// only inherit from ResearchAssistant interface, but not from any other xxxImpl class
class BioResearchAssistantImpl : public ResearchAssistant {
 protected:
  // define two fields: NOTE: totally independent to those fields
  // in PersonImpl, StudentImpl, and FacultyImpl
  String _name;
  String _student_addr;
 public:
  BioResearchAssistantImpl() {  // the constructor
    _name = NAME;
    _student_addr = DORM;
  }

  // override the property methods
  virtual String name() override { return _name; }
  virtual String addr() override { return dorm(); }  // use dorm as ResearchAssistant's main addr
  virtual String dorm() override { return _student_addr; }

  virtual String  lab() override {
    int weekday = get_week_day();
    return (weekday % 2) ? LAB_A : LAB_B;  // alternate between two labs
  }
};

Disclosure: This work is patent pending.



Formalize it as new programming rules

Rule 1 (split data-interface class and data-implementation class). To model an object foo,
define two classes:

1. class Foo as data interface, which does not contain any field; and Foo can inherit 
multiplely from any other data-interfaces.

2. class FooImpl inherit from Foo, as data implementation, which contains fields (if 
any) and implement property methods.

Rule 2 (data-interface class). In the data-interface class Foo:
1. define or override the (abstract) properties (from parent classes if any), and 

always make them virtual (to facilitate future unplanned MI).
2. implement all the (especially public and protected) regular methods, using the 

property methods when needed, as the default regular methods implementation.
3. add a static (or global) Foo factory method to create FooImpl object, which the 

client of Foo can call without exposing the FooImpl’s implementation detail.

Disclosure: This work is patent pending.



Rule 3 (data-implementation class). In the data-implementation class FooImpl:
1. implement all the properties in the class FooImpl: a property can be 

either
a. via memory, define the field and implement the getter and setter, or
b. via computation, define property method

2. implement at most the private regular methods (or just leave them in 
class Foo by the program to (the data) interfaces principle, instead of 
directly accessing the raw fields).

Rule 4 (sub-classing). To model class bar as the subclass of foo:
1. make Bar inherit from Foo, and override any virtual properties 

according to the application semantics.
2. make BarImpl inherit from Bar, but BarImpl can be implemented 

independently from FooImpl (hence no data dependency of BarImpl 
on FooImpl).  E.g. as we showed in ResearchAssistantImpl.

Disclosure: This work is patent pending.



Rule 5 (add and use new semantic assigning property after branching). If 
class C is the semantic branching site of property p, in every data-interface 
class D that is immediate below C:
1. add a new semantic assigning virtual property p’ (of course, p’ and p are 

different names),
2. all other regular methods of D should choose to use p’ instead of p 

according to the corresponding application semantics when applicable.

E.g. this is how we handled Person.addr

Disclosure: This work is patent pending.



Summary: 

The goal is to make fields joining or separation as flexible as possible, to
allow programmers to achieve any intended semantics (in the derived data 
implementation class) that the application needed:

● field joining can be achieved by overriding the corresponding virtual 
property method of the same name from multiple base classes

● field separation can be achieved by implementing / overriding the new 
semantic assigning property introduced in Rule 5.

The success of DDIFI depends on: method implementation without concrete 
fields definition.

… … does it ring a bell? :-)

Disclosure: This work is patent pending.



Java (v8.0, 2014) & C# (v8.0, 2019) default interface methods

Demo: DDIFI can be used in Java & C# to achieve clean MI!

code walk thru: https://github.com/joortcom/DDIFI/tree/main/java_csharp_python

So now with DDIFI, Oracle & Microsoft can rebrand their Java & C# as clean multiple 
inheritance languages ! 😂  (and D too, we will show).

In retrospect, C++ (Cfront v2.0) since 1989 has all the language mechanisms that 
DDIFI uses to achieve clean MI! But for decades, people avoided MI, haunted by the 
diamond problem complexity, until now we solved it.
Challenge: test w/ Cfront v2.0 https://github.com/joortcom/DDIFI/tree/main/cfront
(and send me a PR).

DDIFI in C#, Python, Eiffel, other languages etc.: are left as an exercise.
Demo: We can do it in D too, YES! current D can do clean MI with DDIFI!
https://github.com/joortcom/DDIFI/blob/main/d/MI.d

● only a bit hackish: need to use template mixin + static if
● will be nicer, if D also supports Java’s default interface methods.

Disclosure: This work is patent pending.

https://github.com/joortcom/DDIFI/tree/main/java_csharp_python
https://github.com/joortcom/DDIFI/tree/main/cfront
https://github.com/joortcom/DDIFI/blob/main/d/MI.d


Pros & Cons

Pros:
● Clean: completely solved the diamond problem cleanly.
● General: works in C++ / Python / Java / C# / Eiffel / D! etc…

Cons:
● Each class now split into two classes: one as data-interface (also 

contains regular methods implementation), and the other as 
data-implementation.

○ Rebuttal: “program to interface” is a good practice in almost any serious 
software project already, which is well-understood by the developers.

● Must access fields using property method in public & protected 
methods, i.e. incur lots of virtual function calls.

○ Rebuttal: virtual methods is the corner-stone of OOP (since its start in 1960s’), 
it is well optimized by modern compilers.

○ Also one can use local temp vars to reduce the number of virtual property 
method calls needed.

Disclosure: This work is patent pending.



General guidelines

For planned MI, absolutely known to be field name-clash free, then use the 
language’s native MI mechanism.

Otherwise, esp. for unplanned MI, (un-)anticipated field-name clash, use 
DDIFI:
1. First define fields as virtual property methods.
2. Then write regular-methods, by using the virtual property.
3. Implement the class property by either define data fields or via 

computation in the implementation class.

Disclosure: This work is patent pending.



An analogy
● Fields are like legs of a table.
● On top of these legs, we can build application functionalities (methods 

via computation), e.g place potted plants on top.
● But in certain scenarios (multiple inheritance), the solid legs caused too 

much trouble for us
● … then … 

Disclosure: This work is patent pending.



This is what we can do:

Virtual legs (fields) are
more flexible!

Q & A

Disclosure: This work is patent pending.


